25 research outputs found

    Expression of P. falciparum var Genes Involves Exchange of the Histone Variant H2A.Z at the Promoter

    Get PDF
    Plasmodium falciparum employs antigenic variation to evade the human immune response by switching the expression of different variant surface antigens encoded by the var gene family. Epigenetic mechanisms including histone modifications and sub-nuclear compartmentalization contribute to transcriptional regulation in the malaria parasite, in particular to control antigenic variation. Another mechanism of epigenetic control is the exchange of canonical histones with alternative variants to generate functionally specialized chromatin domains. Here we demonstrate that the alternative histone PfH2A.Z is associated with the epigenetic regulation of var genes. In many eukaryotic organisms the histone variant H2A.Z mediates an open chromatin structure at promoters and facilitates diverse levels of regulation, including transcriptional activation. Throughout the asexual, intraerythrocytic lifecycle of P. falciparum we found that the P. falciparum ortholog of H2A.Z (PfH2A.Z) colocalizes with histone modifications that are characteristic of transcriptionally-permissive euchromatin, but not with markers of heterochromatin. Consistent with this finding, antibodies to PfH2A.Z co-precipitate the permissive modification H3K4me3. By chromatin-immunoprecipitation we show that PfH2A.Z is enriched in nucleosomes around the transcription start site (TSS) in both transcriptionally active and silent stage-specific genes. In var genes, however, PfH2A.Z is enriched at the TSS only during active transcription in ring stage parasites. Thus, in contrast to other genes, temporal var gene regulation involves histone variant exchange at promoter nucleosomes. Sir2 histone deacetylases are important for var gene silencing and their yeast ortholog antagonises H2A.Z function in subtelomeric yeast genes. In immature P. falciparum parasites lacking Sir2A or Sir2B high var transcription levels correlate with enrichment of PfH2A.Z at the TSS. As Sir2A knock out parasites mature the var genes are silenced, but PfH2A.Z remains enriched at the TSS of var genes; in contrast, PfH2A.Z is lost from the TSS of de-repressed var genes in mature Sir2B knock out parasites. This result indicates that PfH2A.Z occupancy at the active var promoter is antagonized by PfSir2A during the intraerythrocytic life cycle. We conclude that PfH2A.Z contributes to the nucleosome architecture at promoters and is regulated dynamically in active var genes

    How are legal matters related to the access of traditional knowledge being considered in the scope of ethnobotany publications in Brazil?

    Full text link

    A view on the role of epigenetics in the biology of malaria parasites

    Get PDF
    Cells and unicellular organisms are similar to their progenitors because information is transmitted from one generation to the next. The information is mainly transmitted in the primary sequence of the genome (genetic information), but there are heritable traits that are transmitted by other mechanisms. Epigenetics studies these alternative modes of inheritance. According to classic definitions, epigenetics refers to heritable differences between cells or organisms that occur without changes in DNA sequence, and do not depend on different external conditions

    Masking Release for Sweeping Masker Components with Correlated Envelopes

    No full text
    To separate sounds from different sound sources, common properties of natural sounds are used by the auditory system, such as coherent temporal envelope fluctuations and correlated changes of frequency in different frequency regions. The present study investigates how the auditory system processes a combination of these cues using a generalized comodulation masking release (CMR) paradigm. CMR is the effect of a better signal detectability in the presence of comodulated maskers than in the presence of maskers with uncorrelated envelope fluctuations across frequencies. Using a flanking-band paradigm, the results of the first experiment of the present study show that CMR is still observed for the masker and the signal coherently sweeping up or down in frequency over time, up to a sweep rate of six octaves per second. Motivated by the successful modeling of CMR using filters sensitive to temporal modulations and recent physiological evidence of spectro-temporal modulation filters, the second experiment investigates whether CMR is also observed for spectro-temporal masker modulations generated using time-shifted versions of the masker envelope for each component. The thresholds increase as soon as the temporally coherent masker modulation is changed to a spectro-temporal masker modulation, indicating that spectro-temporal modulation filters are presumably not required in CMR models
    corecore